I've been thinking alot about the "Computer-based Patient Record: CPR", an acronym as unlikely as GRDDL but once again, a methodology expressed as an engineering specification. In both cases, the methodology is a mouthful, but a coherent architectural "style" and requires a mouthful of words to describe. Other examples of this:
- Representation State Transfer
- Rich Web Application Backplane
- Problem-oriented Medical Record
- Gleaning Resource Descriptions from Dialects of Languages
The term itself was coined (I think) by the Institute of Medicine [1]. If you are in healthcare and are motivated by the notion of using technology to make healthcare effective and inexpensive as possible, you should do the Institute a favor and buy the book:
National Institutute of Medicine, The Computer-Based Patient Record: An Essential Technology for Health Care - Revised Edition., 1998, ISBN: 0309055326.
I've written some recent slides that are on the W3C ESW 'wiki' which all have something to do with the idea in one way or another:
- "A Problem-oriented Medical Ontology - slides"
- "A Problem-oriented Medical Ontology - overview"
- "A Comprehensive Representation Methodology for Computer-based Patient Records"
- "Coronary Artery Bypass Graft Clinical Pathways & Protocols as a DLP"
The nice thing about working in a W3C Interest Group is that the work you do is for the general publics benefit, so it is a manefestation of the W3C notion of the Semantic Web, which primarily involves a human social process.
Sorta like a technological manefestation of our natural darwinian instinct.
That's how I think of the Semantic Web, anyways: as a very old, living thread of advancements in Knowledge Representation which intersected with an anthropological assesment of some recent web architecture engineering standards.
Technology is our greatest contribution and so it sohould only make sense that wherer we use it to better our health it should not come as a cost to us. The slides reference and include a suggested OWL-sanctioned vocabulary for basically implementing the Problem-oriented Medical Record (a clinical methodology for problem solving).
I think the idea of a free (as in beer) vocabulary for people who need healthcare has an interesting intersection with the pragmatic parts of the Semantic Web (avoiding the double quotes) vision. I have exercised-induced asthma (or was "diagnosed" as such when I was younger). I still ran Track-and-Field in Highschool and was okay after an initial period where my lungs had to work overtime. I wouldn't mind hosting RDF content about such a "finding" if it was for my person benefit that a piece of software could do something useful for me in an automated, deterministic way.
"HL7 CDA" seems to be a freely avaiable, well-organized vocabulary for describing messages dispatched between hospital systems. And I recently wrote a set of XSLT templates which extract predicate logic statemnts about a CDA document using the POMR ontology and the other freely available "foundational ontologies" it coordinates. The CDA document on xml.coverpages.org has a nice concise description of the technological merits of HL7 CDA:
The HL7 Clinical Document Architecture is an XML-based document markup standard that specifies the structure and semantics of clinical documents for the purpose of exchange. Known earlier as the Patient Record Architecture (PRA), CDA "provides an exchange model for clinical documents such as discharge summaries and progress notes, and brings the healthcare industry closer to the realization of an electronic medical record. By leveraging the use of XML, the HL7 Reference Information Model (RIM) and coded vocabularies, the CDA makes documents both machine-readable (so they are easily parsed and processed electronically) and human-readable so they can be easily retrieved and used by the people who need them. CDA documents can be displayed using XML-aware Web browsers or wireless applications such as cell phones..."
The HL7 CDA was designed to "give priority to delivery of patient care. It provides cost effective implementation across as wide a spectrum of systems as possible. It supports exchange of human-readable documents between users, including those with different levels of technical sophistication, and promotes longevity of all information encoded according to this architecture. CDA enables a wide range of post-exchange processing applications and is compatible with a wide range of document creation applications."
A CDA document is a defined and complete information object that can exist outside of a messaging context and/or can be a MIME-encoded payload within an HL7 message; thus, the CDA complements HL7 messaging specifications.
If I could put up a CDA document describing the aspects of my medical history that were in my benefit to be freely available (at my discretion), I would do so in the event some piece of software could do some automated things for my benefit. Leveraging a vocabulary which essentially grounds an expressive variant of predicate logic in a transport protocol makes the chances that this happens, very likely. The effect is as multiplicative as the human population.
The CPR specification is also very well engineered and much ahead of its time (it was written about 15 years ago). The only technological checkmark left is a uniform vocabulary. Consensus stands in the way of uniformity, so some group of people need to be thinking about how the "pragmatic" and anthropological notions of the Semantic Web can be realized with a vocabulary about our personally controlled, public clinical content. Don't you think?
I was able to register the /cpr top level PURL domain and the URL http://purl.org/cpr/1.0/problem-oriented-medical-record.owl# resolves to the OWL ontology with commented imports to other very relevant OWL ontologies. Once I see a pragmatic demonstration of leaving owl:imports in a 'live' URL, I'll remove them. It would be a shame if any Semantic Web vocabulary terms came in conflict with a legal mandate which controlled the use of a vocabulary.