About a year or more ago I had an idea that a simple python/SVG library could be written to aid the drawing of the very rudementary components of the yijing in modular fashion upon which the more complex diagrams could be very easily drawn (programatically). Philosophically, it can be thought of extending the concepts within the text into a program that represents the ideas in it. A little beatnick-ish? Well, using SVG, binary numerics and an understanding of the more fundamental arrangements of the trigrams I was able to write such a library: YiJingPlotter.py. It takes advantage of the translation of the trigrams to their binary values (see earlier post) in order to draw them in 2 dimensional coordinate space (leveraging SVG for this purpose). And in 218 lines of code I was able to write the library as well as 2 utility functions that produced the two most (arguably) fundamental / useful arrangements of the trigrams in SVG:
FuXi's circular arrangement
Shao Yung's square diagram
Once again I would embed the SVG diagrams, but alas there is still (apparently) no browser-agnostic way to do this (someone inform me if there is)
The library (written in python) relies on:
I tried to comment as heavily as possible for anyone interested in using the library to generate other diagrams. Comments from the second of the two utility functions are below:
Another demonstration of a classic arrangement drawn using the gua/trigram plotting functions. This is ShaoYong's Square. Probably the most useful (in my opinion) arrangement for observing the relationships between the fully developed 64 gua. Within each row, the lower trigrams are all of the same kind (he refered to them as the 'palace' of earth, mountain, etc..) and within each column the upper trigrams are also of the same kind. So, essentially it is a 2 dimensional plot of the 64 gua where the X coordinate is the upper gua and the Y coordinate is the lower gua. This incredible numeric symmetry comes from simply drawing the gua in ascending binary order from 0 - 63, 8 per line! I've added the english names of the corresponding coordinates so a student can match up the lower/upper gua (by name) to find the gua formed.
Note: I'm still unsure of the proper spelling of Shao Yung's name (Wikipedia has it as Shao Yung, however I've seen various references to Shao Yong)